Spectral Problems in Elasticity. Singular Boundary Perturbations
نویسنده
چکیده
A. The three-dimensional spectral elasticity problem is studied in an anisotropic and inhomogeneous solid with small defects, i.e., inclusions, voids, and microcracks. Asymptotics of eigenfrequencies and the corresponding elastic eigenmodes are constructed and justified. New technicalities of the asymptotic analysis are related to variable coefficients of differential operators, vectorial setting of the problem, and usage of intrinsic integral characteristics of defects. The asymptotic formulae are developed in a form convenient for application in shape optimization and inverse problems.
منابع مشابه
Relative Convergence Estimates for the Spectral Asymptotic in the Large Coupling Limit
We prove optimal convergence estimates for eigenvalues and eigenvectors of a class of singular/stiff perturbed problems. Our profs are constructive in nature and use (elementary) techniques which are of current interest in computational Linear Algebra to obtain estimates even for eigenvalues which are in gaps of the essential spectrum. Further, we also identify a class of “regular” stiff pertur...
متن کاملDetecting the location of the boundary layers in singular perturbation problems with general linear non-local boundary conditions
Singular perturbation problems have been studied by many mathematicians. Since the approximate solutions of these problems are as the sum of internal solution (boundary layer area) and external ones, the formation or non-formation of boundary layers should be specified. This paper, investigates this issue for a singular perturbation problem including a first order differential equation with gen...
متن کاملAn Efficient Numerical Method for a Class of Boundary Value Problems, Based on Shifted Jacobi-Gauss Collocation Scheme
We present a numerical method for a class of boundary value problems on the unit interval which feature a type of exponential and product nonlinearities. Also, we consider singular case. We construct a kind of spectral collocation method based on shifted Jacobi polynomials to implement this method. A number of specific numerical examples demonstrate the accuracy and the efficiency of the propos...
متن کاملAsymptotic Analysis and Polarization Matrices
Polarization matrices are considered for the elasticity boundary value problems in two and three spatial dimensions. The matrices are introduced in the framework of asymptotic analysis for boundary value problems depending on small geometrical parameter, it is the size of an elastic inclusion or a defect (cavity, crack) in an elastic body. Our analysis is performed for some representative class...
متن کاملDilations, models, scattering and spectral problems of 1D discrete Hamiltonian systems
In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...
متن کامل